Part Number Hot Search : 
78M05 SW12360W SMAJ12 RL101 TLC157D FCW100 LXP1011 74HC406
Product Description
Full Text Search
 

To Download IRLR2905ZPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRLR2905ZPBF irlu2905zpbf hexfet ? power mosfet v dss = 55v r ds(on) = 13.5m ? i d = 42a  www.irf.com 1 automotive mosfet pd - 95774a specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating tempera- ture, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. s d g description  logic level  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  lead-free features d-pak irlr2905z i-pak irlu2905z hexfet ? is a registered trademark of international rectifier. absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) single pulse avalanche energy  mj e as (tested ) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case  ??? 1.38 r ja junction-to-ambient (pcb mount)  ??? 40 c/w r ja junction-to-ambient  ??? 110 -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m) 110 0.72 16 max. 60 43 240 42 85 57 see fig.12a, 12b, 15, 16

2 www.irf.com s d g electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 55 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.053 ??? v/c r ds(on) static drain-to-source on-resistance ??? 11 13.5 m ? ??? ??? 20 m ? ??? ??? 22.5 m ? v gs(th) gate threshold voltage 1.0 ??? 3.0 v gfs forward transconductance 25 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 23 35 q gs gate-to-source charge ??? 8.5 ??? nc q gd gate-to-drain ("miller") charge ??? 12 ??? t d(on) turn-on delay time ??? 14 ??? t r rise time ??? 130 ??? t d(off) turn-off delay time ??? 24 ??? ns t f fall time ???33??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 1570 ??? c oss output capacitance ??? 230 ??? c rss reverse transfer capacitance ??? 130 ??? pf c oss output capacitance ??? 840 ??? c oss output capacitance ??? 180 ??? c oss eff. effective output capacitance ??? 290 ??? source-drain ratings and characteristics parameter min. typ. max. units i s continuous source current ??? ??? 42 (body diode) a i sm pulsed source current ??? ??? 240 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 22 33 ns q rr reverse recovery charge ??? 14 21 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 5.0v, i d = 30a  v gs = 16v v gs = -16v v ds = 44v conditions v gs = 5.0v  v gs = 0v v ds = 25v ? = 1.0mhz mosfet symbol showing the integral reverse p-n junction diode. t j = 25c, i s = 36a, v gs = 0v  t j = 25c, i f = 36a, v dd = 28v di/dt = 100a/s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 36a  v ds = v gs , i d = 250a v ds = 55v, v gs = 0v v ds = 55v, v gs = 0v, t j = 125c v gs = 4.5v, i d = 15a  v gs = 0v, v ds = 1.0v, ? = 1.0mh z v gs = 0v, v ds = 44v, ? = 1.0mh z v gs = 0v, v ds = 0v to 44v  v gs = 5.0v  v dd = 28v i d = 36a r g = 15 ? v ds = 25v, i d = 36a i d = 36a

www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 v gs , gate-to-source voltage (v) 1.0 10.0 100.0 1000.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 10v 60s pulse width t j = 25c t j = 175c 0 1020304050 i d, drain-to-source current (a) 0 10 20 30 40 50 60 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 8.0v 380s pulse width 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 3.0v vgs top 10v 9.0v 7.0v 5.0v 4.5v 4.0v 3.5v bottom 3.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 3.0v vgs top 10v 9.0v 7.0v 5.0v 4.5v 4.0v 3.5v bottom 3.0v

4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 500 1000 1500 2000 2500 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 1020304050 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 44v vds= 28v vds= 11v i d = 36a 0.2 0.6 1.0 1.4 1.8 2.2 v sd , source-to-drain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec

www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 1e-006 1e-005 0.0001 0.001 0.01 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.765 0.000269 0.6141 0.001614 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci= i / ri ci= i / ri 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 5.0v

6 www.irf.com q g q gs q gd v g charge d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 40 80 120 160 200 240 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 36a 6.2a bottom 4.3a -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a

www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 10 20 30 40 50 60 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 36a

8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     v ds 9 0% 1 0% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms

www.irf.com 9  

  

  
      
   12 in the assembly line "a" as s embled on ww 16, 1999 example: with assembly this is an irfr120 lot code 1234 year 9 = 199 9 dat e code we e k 16 part number logo international rectifier assembly lot code 916a irfu120 34 year 9 = 1999 dat e code or p = d e s i gn at e s l e ad- f r e e product (opt ional) note: "p" in assembly line pos ition i ndi cates " l ead- f r ee" 12 34 week 16 a = assembly site code part number irf u120 line a logo lot code assembly international rectifier

10 www.irf.com  
   
      
    
  as s e mb l y example: wi t h as s e mb l y this is an irfu120 year 9 = 199 9 dat e code line a we e k 19 in the assembly line "a" as s emble d on ww 19, 1999 lot code 5678 part numbe r 56 irf u120 international logo rectifier lot code 919a 78 note: "p" in assembly line pos iti on i ndi cates "l ead- f r ee"  56 78 as s e mb l y lot code rectifier logo international irfu120 part number we e k 1 9 dat e code ye ar 9 = 1999 a = as s e mb l y s i t e code p = designates lead-free product (optional)

www.irf.com 11 data and specifications subject to change without notice. this product has been designed for the automotive [q101] market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 12/04   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.089mh r g = 25 ? , i as = 36a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%. 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.   when mounted on 1" square pcb (fr-4 or g-10 material) . for recommended footprint and soldering techniques refer to application note #an-994      )  !"#$%   

    
      
   tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters ( inches ). 3 . outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRLR2905ZPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X